I International Young Naturalists' Tournament

100 120 140 / 76 H3

The magnetic arrows

Reporter: Anton Khvalyuk

Formulation of the problem

Place two suspended magnetic arrows close to each other. After a short time they will reach the equilibrium where the opposite poles are aligned together. Deflect one of the arrows by some small angle and release it. Both arrows will start to oscillate. Investigate and explain the character of the coupled oscillations of the magnetic arrows

Qualitative explanation

 \vec{B}_2

Appearance of oscillations

6

Dependence of angle on time

Sum of oscillations

Sum of oscillations

Different modes of oscillations

Mixed-phase (nonharmonic) oscillations Anti-phase (harmonic) oscillations

In-phase (harmonic) oscillations

arrows close to each other....

Full theoretical model

100%

Main principles

- The distance between the ends of the arrows is very small
- The angles of
 deflection are very
 small

Close to each other, small angle

Magnetic field of the arrow

0.080

0.085

0.090

0.095

0.100

0.105

0.110

Attraction force

16

Law of motion

$$\begin{split} I\ddot{\varphi}_1 &= M(\varphi_1, \varphi_2, d) = (\vec{r} \times \vec{F}(\vec{d}))_z \\ I\ddot{\varphi}_1 &= -|F(d)|l \frac{(D-l)\varphi_1 + l\varphi_2}{d} \end{split}$$

Damping of oscillations

Comparison

19

Results

Explain the phenomenon

- The presence of attractive force
- Appearing of oscillations

Investigate the phenomenon

- Form of oscillations
- Different modes of oscillations

Theoretical model

• Good convergence with experiments

Conclusions

The explanation of the effect

- The attractive force and the rotating torque as a result appears because of inhomogeneity Of the magnetic field
- The oscillations appear because the system has only one stable equilibrium position

The results of investigation

- Oscillations represent a sum of two oscillations
- The difference of phase between this two oscillations define the exact form of oscillations
 - The difference of phase of oscillations is defined by the initial conditions and the conditions of the experiment

 $\vec{B}_{1,2} = f(D, l, \varphi_1, \varphi_2)$

Thanks you for attention!

Extra slide: Fourier analysis for the oscillations

Qualitative explanation

Sum of oscillations

25

Influence of distance

